Northfield helical carbide cutterhead gives smooth cuts, reduced maintenance and low noise levels.

Northfield's helical carbide cutterhead gives smooth, continuous cuts. The "helical" or spiral configuration of the cutters or "bits" maintains constant cutting contact with the stock. Eliminates "pick-outs", gouging and surface irregularities associated with the chopping impact of straight knife planers.

Simple, easy to keep cutterhead may be jointed and hollow ground in under 1-hour. Individual investment-cast bits align automatically and eliminate problems/cost of manual adjustment. Bits may be raised three times to maintain cutting circle. Carbide cutters offer a long cutting edge life through hundreds of thousands of board feet.

Helical design reduces noise, compared to straight knife planers. Continuous shearing eliminates impact vibration created when a single, straight knife row hits the stock. Typical reductions in the 15 to 20 dBA range (ear attenuated) are common.
Each cutterhead is dynamically balanced, with bits in place, to assure smooth planing. Dynamic balancing of the complete cutterhead also means replacement or adjustment of bits will not alter the established balance of the cutterhead.

Jointing and hollow grinding may actually be done in less than an hour (often as little as 20 minutes) since the entire head is held to tight tolerances. A tracking groove provides accurate heel grinding from row to row, bit to bit.

Individual bits are investment-cast to assure uniformity. Next, a carbide cutting surface is installed and face ground at the factory (good for the life of the bit). This process results in size, weight and shape uniformity—a must for dependable, smooth operation and fast maintenance. Bits install in the cutterhead with a single bolt. No special alignment or artful locating required. Instead, the bit does it all—automatically. And each bit requires only 20 lb. ft. of torque to assure a locking configuration.

Specifications

- Minimum Cutting Circle: 4½”
- Maximum Body Length: 36”

The number of bits in a head is determined by the cutting circle diameter and length of head body. The number of rows of bits in a head is determined by the cutting circle diameter.